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Abstract-An indirect boundary element formulation is constructed by using a fundamental solution
of the biharmonic operator. It is shown that the fundamental solution and its derivatives can be
represented by four functions with two integers. The new representation is not only a simpler
representation but also reveals a structure that is exploited in the development of an algorithm
based on the analytical integration of line and area integrals. The analytical integral values are used
to establish continuity requirements on the unknown fictitious densities. Numerical examples
consider the consequences of satisfying and violating the continuity requirements by the unknown
fictitious densities. It is also shown that if the fictitious density distributions do not satisfy certain
conditions then the solution can be atTt:cted by the choice of the non-dimensionalizing variables.
Numerical examples with a variety of boundary conditions demonstrate the eIT~"Ctiveness and
limitations of the proposed algorithm.

I. INTRODUCTION

The various boundary element formulations for plate bending can be broadly categorized
as the direct and the indirect formulations. The direct methods are based on the reciprocal
theorem. Bezine (1978) and Stern (1979) generated integral equations that related plate
displacements, slopes, bending moments and shear forces on the boundary. The indirect
formul~ttions arc constructed by superposing singular solutions. The unknowns of the
problem arc fictitious densities but these fictitious densities can be related to jumps in
physical variables at the boundary. There are several approaches for constructing the
integral equations in indirect methods. Jawson el al. (1967) represented the biharmonic
equation by two harmonic equations and used the fundamental solution for the harmonic
equations to formulate the problem. Altiero and Sikarskie (1978) used Green's function
for a circular clamped plate for constructing the integral equations. Both of these indirect
formulations produce good numerical results only for certain kinds of boundary conditions.
A more general indirect formulation can be constructed by using the fundamental solution
of the biharmonic operator, as was done by Tottenham (1979). However, few details about
the numerical implementation were discussed. Several investigators (Paris and Leon, 1987;
Hartmann, 1986; Abdd-Akher and Hartley, 1989; Vitooraporn and Moshaiov, 1989; Wu
and Altiero, 1981) have used the above formulations as the starting point. No study has
been conducted that establishes the superiority of one formulation over another.

The fundamental solution of the biharmonic operator is used for constructing the
indirect formulation in this work as it is simpler than the direct boundary clement method
and yet applicable to all types of boundary conditions. The simplicity of the formulation is
due to the following two reasons.

(i) A total of eight fundamental solutions arc needed in the entire formulation. The
direct method uses eight fundamental solutions to relate the boundary data and requires
eight more to represent the bending moments (in-plane stresses) and the shear forces
(transverse shear stress).

(ii) The highest order of singularity is of order 2 in this work. In the direct formulation
the fundamental solutions relating the boundary data also contain a singularity of order 2.
However, subsequent differentiation for representing moments and shear forces generates
higher order singularities. Evaluation ofquantities containing these higher order terms near
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and on the boundary requires special consideration (see Kaya and Erdogan. 1987: Kutt.
1975: Rudolphi. 1991 ,. It should be emphasized once more that no claim is being made
that the indirect method is numerically superior to the direct method. All that is being
claimed is that the indirect method is simpler.

The fundamental solutions relating plate displacement to a unit transverse force and
a unit bending moment are relatively simple. But to compute slopes. moments and shear
forces the fundamental solutions have t,") be repetitively differentiated. This repetitive
differentiation results in long. messy expressions. The problem is further exacerbated if one
seeks to evaluate the integrals of these fundamental solutions analytically. In this work an
alternative repn:sentatilHl is described in Section 3. This representation uses four functions
with two integer parameters to describe all the fundamental solutions. This representation.
besides being simple. also reveals the structure of the fundamental solutions that can be
exploited for the development of the numerical algorithm.

The integral representation of the relevant plate quantities, contains fictitious shear
force distributil)n and fictitious bending moment distribution as the unknowns of the
problem. In Section 5 the continuity requirerm:nts the fictitious shear force and fictitious
bending moment must satisfy arc derived and discussed. Situations in which the continuity
conditions should be relaxed arc also discussed in Section 5. The continuity requirements
dictate that the fictitious shear force should be approximated by a Lagrange polynomial
and the fictitious hending moment should he approximated hy a Hermite polynomial.

I n Section 7 the dll11l'nsionless v;\ riables arc deli ned . I t is shown that if certai n condi tions
(analogous to cquilibrium) arc not satislicd by the liditious shcar force distribution and
lictitious bending nWllIent then the results for displaccment, slopes and mOll1ents can b-:
alfected hy the choice of non-dimensi'lIlali/ing variables.

To evaluate the boun~bry integr;ds th-: unknowns WI..T-: approximated hy polynomials
over segments of th..: boundary. L\Ch segment was subdivid..:d into a number of straight
line s..:gm-:nts. The elcm-:nt over which th-: unknown is aprroximated is suhdivided to get
a belt..:r representation of the ..:urvatllfl..' of th-: boundary without in..:r..:asing the numher of
unknowns. The integrals arc evaluated analytically using the general algorithm presented
in Vahle (19X5).

To evaluate the domain integrals the transvns-: loads were assumed to h-: constant
over small elements of the domain. The shape of these domains can be arbitrary. The
domain integrals were converted to line intt.:grals over the boundary of eal.:h domain element
as described by Zhang ( I,-)X9). The boundaries of the domain clements arc approximated
by a set of straight line segments and once more the integrals arc evaluated analytically
using the algorithm of Vahle (19X5j.

A circular and a square plate subjeded to a uniform transverse load with a variety of
boundary conditions arc used as numerical examples. Results arc comrMcd for Lagrange
and Hermite polynomial approximations in each example. These results demonstrate the
etfect of continuity requirements on the accuracy and the matrix conditioning. The results
arc presented in Section 8.

1. BOU~Dt\RY VALUE PROBLE\I

The boundary valu-: problem in terms of a differential equation is presented brid1y in
order to introduce notation and the sign convection.

Let 11"( Q j be the small dellel.:lion at a point Q on a thin clastic, homogeneous. isotropic
plate R. The dd1cction 1\'( Q) is related to the transverse load p( Q) by the biharmonic
operator ddined below:

f)1I'.",,(Q) = p(Qj Q in R i,j = x.r ( I )

where D is the Ilexural rigidity of the plate. A repeated index implies summation and a
comma implies dilTerentiation. The in-plane stresses 17,; are related to the bending moments
M" which can be related to the deflection 1\' as follows:
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Fig. I. Positive direction for moments and shear forces.
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(2)

where 211 is the thickness of the plate. v is Poisson's ratio and (5,/ is the Kronecker delta.
The shear force Qf is related to the transverse shear stresses and the deflection II' as follows:

(3)

It should be noted (see Fig. I) that even though M .). = M", in magnitude. the directions
of the moments are different and this difference at a corner results in a corner force
(discussed later). At each point on the boundary B except corners, two pieces of information
must be specified. as given below:

w(Q) = Ii' or (4a)

and Q on B

II'n(Q) = \l'A = (J or Mn(Q) = AI (4b)

where the quantities with a bar represent the specified boundary values. tI, represents the
direction cosines of the unit normal at point Q on the boundary B. Vn is the equivalent
shear force and Mn is the normal bending moment, which can be related to previously
defined quantities as follows:

where

(I-v)
= - D(w,nnn + (2 - V)Il'.lIn) - D -R- (11'.11- w.nn )

(5)

(6)
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H·.II = 11.,;(,(,

(7a)

(7b)

OC)

(7d)

and t, and R represent the direction cosines of the unit tangent and the radius of curvature
at point Q respectively on the boundary B.

At each corner the following must be specifled:

(8)

where C, represents the corner force.
The integral representation of eqn (I) is developed by using a fundamental solution.

as discussed in the next section.

Y. FUi"DAME;-';TAL SOLUTION

Let G(Q. /') represent the displacement at point Q due to a unit transverse force at
point P in an inflnite plate. Using Fourier transform it can be shown that:

when:

" I.
(,(Q.I') = ,. In (I')

Xrr[)

,
r- = 1',1',

1', = x,(Q) -x,(I').

(9)

Another fundamental solution associated with a unit moment can be generated by
considering two transverse forces of e4ual magnitude but in opposite directions plact:d
along a line. as shown in Fig. 2. The direction of the two forces is chosen to produce a
positive deflection to the left of the point P. By superposition the deflection at point Q will
be given by:

Fig. ' Positive direction for .\f..
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oG(Q.P) ,
[G(Q.P-e)-G(Q.P+e»)V= - ec(p) (2eV) + terms of order e·.
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As e -+ 0 let V -+ oc, such that 2eV -+ M,. The direction of A( will be perpendicular to the
line. as shown in Fig. 2. Thus - [cG(Q, P»)/[cC(P)] represents the deflection at point Q due
to unit moment applied at point P. The superposition principle can once more be invoked
to generate integral expressions for the displacement. By distributing a fictitious transverse
force V* and a fictitious moment M:. two line integrals will be generated. The distributed
load can be incorporated by distributing the point load over the entire domain R. The
following is the integral expression for the deflection w:

»'(Q) =fG(Q.P)V*(P)dS(p)+f -Oo~i;;P)M:<P)ds(P)

+fLG(Q.P)p(P)d:c(P)dy(P) (10)

where s represents the arc length up till point P as measured from some arbitrary point on
the boundary B. Fundamental solutions associated with Mil' Q,. Mn • Mnl and Vn can be
developed by appropriate differentiation and are presented in detail in Section 3.1. It should
be noted that the direction of the line' in Fig. 2 is chosen as the normal rather than the
tangent direction to the boundary due to numerical consideration only. The numerical
discretization discussed in Section 4 results in a system of algebraic equations. The greater
the dominance of the diagonal term in the matrix of algebmic equations. the better the
numerical accuracy of the solution. When bound.try conditions are imposed on the normal
moment [eqn (4b)j. the singular nature of the fundamental solution yields a singularity
contribution (Cauchy's principal value) when point P crosses point Q on the boundary.
The singularity contribution is zero if the tangent direction is chosen for the line Cand is
equal to [M:<Q)/2] when the normal direction is chosen for the line C. This singularity
contribution is added to the diagonal term. Hence the diagonal dominance is increased
when the line Cis in the direction normal to the boundary. Another way of saying the above
is that the normal direction for' results in strong singular integrals (Fredholm equation of
the second kind) while the tangent direction results in weak singular integrals (Fredholm
equation of the first kind).

We note that the partial derivative at Q is the negative of the partial derivative at point
P. With that in mind we rewrite", and its derivatives as

W,,/k(Q) =tG. ijk (Q. P) v* (P) ds+t G.i/km(Q. P)nm(P)M:(P) ds(P)

+fLG.i/k(Q. P)p(P) d:c(p) dy(P) (II)

where all derivatives are now performed at point Q.
In a similar manner we can write expressions for single and double derivatives at point

Q. It is clear from the second integral that we need to perform the differentiation of the
fundamental solution four times. These differentiations result in long. messy expressions.
The problem is particularly acute if one seeks to integrate these expressions analytically.
An alternate notation is presented that is very convenient for presenting not only the
various fundamental solutions but also the integrals of the fundamental solutions.

3.1. Structure of the fundamental solutions
Most fundamental solutions are linear combinations of four singular functions. as was

pointed out by Vable (1985). In plate bending problems there is a more defined structure
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to the fundamental solutions. as reported in Zhang (1989). The structure is emphasized by
defining the following functions:

LG[p·ql = r~r~ In (r)

[p I I [(r,+/r,y (r,-/r,y]JG .q = - . + .
2 (r,-/r,)q (r,+/r,)q

[ I I [(r,+/r,.y (r,+/r.,y]KGP.q = - . - .
2/ (r, - /rY (r, - /r,.)q

(12)

(13a)

(13b)

(14)

where p and q are integers and / = J=I. The complex variables used in egn (13) are to
emphasize the structure of the fundamental solution that will be exploited in the devel
opment of the algorithm in Section 4. The algorithm uses only real variables. In Table I
the fundamental solution and its derivatives are defined in terms of the four functions
defined in eqns (12)-(14).

4. PROBLEM DISCRETIZATION

The objective of problem discretization is to generate an algebraic expression. A series
of assumptions needs to be made to reduce the line and area integrals to algebraic expressions.
These assumptions and their implications arc considered next.

4.1. Lilli: integral
The general algorithm described in Vable (1985) is used here for the evaluation of

line integrals. The algorithm is described briefly here in context of plates. Three assumptions
are made.

Assumption I. Assume the unknown fictitious shear force and the unknown fictitious
moment can be represented by a linear combination of !vi piece-wise continuous functions

9",·
Assumption 2. Assume that each of the m segments can be represented by Nm straight

line segments.
Assumption 3. Assume 9m can be expanded about the mid-point by Taylor series.

The three assumptions. in the absence of distributed load (p = 0), reduce the line
integrals of cqn (II) to:

Table I. Fundamental solution and its derivatives

81tDG = LG1l.OI + LGIO.ll
81tDG., = 2LGI 1.OI + JGII.OI + pGII."1
81tDG", = 2LGIO. 11+KG(I·O'+PG10.1i
81tDG.u - 2LGlo.ol+JG!I.I,+Z
81tDG." = KGII.Ii
81tDG",. = 2LGlo.OI_JG(I·1i+2
81tDG;.. "" 3JGIO. 11_JGI 1.ll
81tDG.

uv
"" KGlo.1l_KGll.ll

81tDG "" JGlo.11+JGII.lI
81tDG"'" - 3KGIO. 11+ KG(I·ll
81tDG"''' = 2JGII,lI_4JG!O.ll
81tDG.. ,n = 2KG11,l1- 2KGIO.ll
81tDG"'''''' = -2JGI 1.JI
81tDG·'·... = _')KG(I·JI_ZKGIO.:I

81tDG~::: = 2JGII.JI+4JG!O.:1
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(15)

(16)

and sp = (Sp+ I +Sp)/2 is the mid-point of segment p. NT is the number of terms retained
in the Taylor series. For Lagrange linear polynomials. NT = 1 and for cubic Hermite
polynomials. NT = 3. The summations in eqn (15) define the assembly process. By satisfying
the boundary conditions at M points a set of algebraic equations in the unknown d~'") will
be obtained. The integrals in eqn (16) are evaluated using the transformation described
next.

4.1.1. Coordinate trans/ormation. In Fig. 3 the pth line segment is shown. Op is the
angle of the line segment measured from the x-axis in the counterclockwise direction. Point
A is the intersection of the line segment with the perpendicular line drawn from point Q.
The perpendicular distance QA is designated as Dp • while the distance from the mid-point
8 to point A is designated as Cpo The tangential coordinate tp is measured from point B.
Noting that thc inOuence functions in Table I are a lineur combination of the functions
defined in cqns (12)-( 14) thc problcm reduces to the evaluation of the following four
integrals:

y

i
l~. I

/Jlk.I.11 = t..JG(i./1 dt
p P

1~

i""IK1k.IJI = t:.KG(IJI dt
p p,,

(17)

(18a)

(18b)

$AS 29:J-F

'--------------------x
Fig. 3. Geometry of the pth segment.
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j
~ T,. I

Iplle.I.;1 = t.PG!I.,1 dt
p p

T.,

where Tp= - £2 and Tp~ I = L/2.
By geometry it can be shown that

where

Using eqns (13), (18), and (20) we obtain

/J11e.i. tI == ( - 1r+' (cos (i+j)Opj~Ie.,.t1 - sin (i+j)lJpK~Ic.i./I)

IKIIe.1.f1 == (-I)'+/(sin (i+j)Opj~Ie.,.Ji+cos(i+j)O"K);·l.tI)

where

jlle.I.tI = \(/Ik.i.tI + JIIe.i./!)
p • p p

K,Ie.I.Ji = 1_(/IUtl_JIIe.,.tI)
p 2/ p p

ilp
" (t-B)p

Ilk.l.tI = l p _P dt
I' ,~" (t" - B,,)" I"~

(19)

(20)

(21 )

(22a)

(22b)

(23a)

(23b)

(24)

Jand Jl arc the complex conjugatcs of I and B of eqns (24) and (21) respectively.
The integrals j:~.,.'I, K);·',Ji, I L);·i,tI and 11':;",'1 can be evaluated by the general recursivc

algorithm given in Vable (19H5). It must bc emphasized that the entire computation is
carried out in the real plane and no complex arithmetic is used. The final results arc
analytical values of the integrals in eqns (17), (18) and (19). These recursive relations can
also be used for determining continuity requirements and singularity contributions, as
shown in Sections 5 and 6 respectively.

4.2. Are{J i/ltegrals

For the purposes of presentation we define

A"Ie = fIx G.I'Ie(Q, 1')1'(1') dx(P) dy(P). (25)

The area intcgrals arc reduced to algcbraic expressions by making two assumptions.

A.l'suml'tio/l 1. We assumc that thc distributed load p( P) is piecewise constant over N
subregions Rn • The slopes, moments and shear forces all contain derivatives of the fun·
damental solution. By using Green's theorem we have

(26)

The minus sign is due to the fact that the integration is with respect to P while the derivatives
arc with respect to point Q. The transformation of the area integral in the displacement
expression is achieved by noting that:
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Using Green's formula it can be shown
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(27)

It should be noted that the boundary Bn enclosing the domain element Rn can be of
arbitrary shape. This is useful when the parts of the boundary Bn are the same as the actual
boundary. In the interior the simplest approximation is a triangle. In this paper the entire
region Rn is considered enclosed by a boundary made up from three parts, Each part can
have any arbitrary shape.

Assumption 2. Assume each of the three parts can be represented by JIm straight line
segments. Equation (26) can thus be represented as

(29)

With the last assumption we once more have integrals over straight lines. The term r;nj

in eqn (28) is the perpendicular distance from the field point Q to the pth line segment and
equals Dp of eqn (21). Hence, all A values arc linear combinations of the functions given
by eqns (12)( 14). Thus the integrals in the equation arc linear combinations of the integrals
in eqns (17)( 19) with k = 0 and can be found in exactly the same manner as described in
the previous section. It should be emph'lsized th'lt recognition of the structure of the
fundamental solution as given by the definition of the four functions in eqns (12)-(14)
results in a simple algorithm that can be used for the analytical evaluation of the line and
area integrals.

5. CONTINUITY REQUIREMENTS

The fundamental solutions in Table I arc singular when the field point Q overlaps the
source point P. The continuity requirements arc established by answering the question:
what arc the conditions the unknown fictitious shear force V· and the unknown fictitious
moment M: must satisfy in order for the integrals to remain bounded? The integrals
containing the weak singular functions G. G,; and G,II arc always bounded. The singular
functions G,'/' and G,ll'''' contain first and second order singularities and yield the information
we seck. These quantities appear in the expressions of 11',11 and 11',llk'

We will only consider the continuity requirements at a regular point on the boundary
and not a corner. There is no loss ofgenerality by letting the point Q approach the boundary
from the interior along the normal direction (as shown in Fig. 4), as the continuity conditions

························

n

A

Fig. 4. Elemcnt gCl1mctry for cstablishing continuity requirements.
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are not dependent on the path of Q. Let 0 be the point where Q touches the boundary. We
draw two segments of length e about point O. Let S'I and SIlk be the integrals in the
expressions of "'.11 and W.l1k in the vicinity of point 0 that may become unbounded. Thus

S,,(Q) = Fe G"",(Q, P)n",(P)ld:(P) ds (30a)

S"k(Q) =F,G,';k(Q, P) V*(P) ds+F, G.ijk",(Q, P)n",(P)M:(P)ds. (30b)

Expanding M: about point 0 and using the integral formulas of Section 4 it can be shown
that:

Su = - 2 sin 20(M:(0+) - M:(O - »(In (e) -In (c5»

-2( I -cos 20)("'[:(0") +M:(O- »n + terms of orderE and b (31)

where the superscripts + and - refer to the value of M: just after and before point O.
Similar expressions can be derived for other Sf;' As Q approaches point 0, that is b -- 0,
one way of enforcing that S" remains bounded is to demand

(32)

The continuity of M: is more restrictive than warranted by eqn (31). ror if
IM:(O' )-M:(O )1 ~ hI), then S" will remain bounded as I) In(S) --0 as t'i --0. K refers
to a positive numher. The less restrictive condition is referred to as Holder's condition.
However, it is not dear how one would enfon:e Holder's condition in REM.

It should be emphasized that if .""" is hounded then 1\'.1' is hounded. This implies that
moments iH" and hence stresses must remain bounded. In problems such as rectangular
holes in inllnite plales, stresses at the corner arc not bounded. Analysis of such problems
must therefore permit discontinuities in M: at the corners. Another point to note is that
W.!i can be bounded and yet be discontinuous. Thus if finite discontinuity in stresseS is being
modeled then the continuity of AI: must be enforced.

The continuity of 1I',IIk is necessary if 11'", must be bounded. Hence the continuity of
AI: is assumed in writing the following expn:ssion for S", ;

S,,< = (cos 30 - 3 cos 0)( V* (0' ) - V*(O »)(111 (I;) -In (0» + (sin 30 - 3 sin 0)

x (V* (0") + V* (0 »1l' - 6(sin 0 - sin 30).\f :(0)/1: - 3(sin 30 - sin 0)

(
dM: dM:) .

x (0')- (0) (In(d-ln«(»)+3(cos30-cosO)
ds lis

(
dM:.. dAI: ~)

x·~~- (0 ) + (0) It.
ds ds

A simple way of enforcing that SXXT remains bounded as c5 -- 0 is to demand that

(33)

(34)

(35)

The continuity of the fictitious shear force V* and continuity of the slope of the
fictitious moment i\'[: is more restrictive than necessary. The conditions
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referred to as Holder and Hadamard conditions. are less restrictive but it is not clear how
one enforces these conditions in BEM. Once more it is emphasized that the continuity
requirements of an equation do not preclude discontinuities in shear forces. The conditions
only enforce that the discontinuities in the shear force remain finite.

5.1. Choice ofpO(~'nomialapproximation
The Lagrange polynomials ensure continuity of a function at element nodes as the

coefficients of the polynomial are determined in terms of the nodal values of the function
and are good choice for the approximation of the fictitious shear force V·. The Hermite
cubic polynomials ensure continuity of the function and its first derivatives as the coefficients
of the polynomials are evaluated in terms of the nodal values of the function and its
derivatives. The optimum choice of approximation would yield three unknowns per node
(nodal values of fictitious shear force. nodal values of moment and its derivative). However.
we need to satisfy two boundary conditions per coll"tion point. This dichotomy leads to
a cumbersome coding process. In this work the fictitious shear force and moment are
approximated by the s"me polynomial. which will either be a Lagrange linear polynomial
or a Hermite cubic polynomial. It should be emphasized that the cubic Lagrange polynomial
approximation used by Vitooraporn and Moshaiov (1989) docs not satisfy continuity of
slopes at the clement nodes. Thus the use of the cubic Lagrange polynomial may lead to
poor results ncar the nodes on the bound:lry as slope continuity is not satisfied at these
points.

6. SINGULARITY CONTRIBUTION

In this work no explicit expression for the singul"rity contribution is coded in the
computer program. The iterative formulae of Vable (1985) 'Ire used when the field point
Q is within a boundary dement. To ensure correct computation. point Q is always chosen
as the mid-point of a 2t: segment (Q = 0 in Fig. 3). The limitation of this idea is that it
cannot be used at corners. The analytical values of singularity contributions at a regular
point as computed in the code arc given below to elaborate a potential problem. The
singularity contribution for the bending moment (SMn ) and the equivalent shear force (SV)
were calculated from S,j and SUk by enforcing the continuity conditions of eqns (32), (34)
and (35). The values of the singularity contributions are:

S v = V· [(I-V) 1+vJ •
2 + 2R + 2ttt M n'

(36)

(37)

Note the coefficient of M: in the expression for equivalent shear for SV. It contains the
term of lit. which would seem to imply that as & -- O. equivalent shear force V will become
unbounded. This docs not happen as the term is independent of the element orientation
and when the contributions from the other elements are added this term cancels out. This
is the basic mechanism in the computation of the finite part of integrals containing higher
order singularities. However, during computation a large number is added into the matrix
and later subtracted. This addition and subtraction of large numbers can lead to a loss of
significant figures. Therefore it may be worthwhile considering a regularization process for
higher order singularities for analytical integration along the lines proposed by Rudolphi
(1991) for numerical integration.
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7. DIMENSIONLESS V.\RIABLES

Let Land Alo be some characteristic length and moment. The dimensionless variables
shown below with a hat are

:i:, = x, L

Q, = Q,L/J/o

(,= ~',L/Mo

p=pL"/Mo

A;: = M:/Jfo

(. = ~ ··L/MI)'

Substituting the above definition into the integral equations (10), we obtain

(38)

(39)

If the last term in the square bracket is not zero, then the ehoice of the non-dimen
sionalizing parameter L will atreet the displacement. Since the term in the square brackets
is a quadratic in the field point coordinates the slope and the moments ean also be allceted
by the choice of the parameter L. It can be confirmed that the following four conditions
must be satisfied if the computed solution is to be independent of the parameter L:

(40)

where/I = I ;j~ = X JJ = y ;j~ = (x" +y").
The first condition (R,) implies that force equilibrium in the :-direction must be met by

the fictitious shear force distribution. The second (R") and third (R J ) conditions imply that
the moment equilibrium in the y- and x-directions respectively must be satisfied by the
unknown distribution. The last condition (R~) can be interpreted as a second moment of
some kind. The conditions of eqn (40) arc not explicitly enforced and may not be satisfied
by the computed solution, as the numerical results demonstrate. Wu and Altiero (1981)
reported that the choice of reference radius (the same as the parameter L) affected their
results. There are two likely reasons for this. (i) Their unknown distribution did not satisfy
the conditions of eqn (40). (ii) The conditioning of the matrix in the algebraic system may
have been significantly affected. as discussed by Heise (1987). Work is in progress to overcome
both these problems. as was done for elastostatics in Vable (1990). In this work the con
ditioning of the matrix and the value of the resultants Ri in eqn (40) will be monitored.



357Boundary element method for plate bending problems

8. NUMERICAL RESULTS

Extensive numerical testing was conducted for all types of boundary conditions. Bound
ary data (li',lJ,J\.[M' V) were generated from a known analytical solution, Three kinds of
boundary conditions were simulated and the computed solution was compared with the
analytical solution at a number of points. The three types of boundary conditions that were
simulated were the following.

Type I: displacement and slopes were specified to simulate the clamped type boundary
conditions,

Type 2: displacement and moments were specified to simulate simply supported boundary
conditions.

Type 3: equivalent shear force and moments were specified to simulate the free edge bound
ary conditions.

Each problem was solved using linear Lagrange polynomials and then using cubic
Hermite polynomials for the approximation of the unknowns, and the results are compared.
In all problems the condition number of the matrix in the algebraic equation was computed.
The matrix condition number was computed using the following definition:

Matrix condition number = II A II • II A III (41)

where II A II and II A·~ III are the norm of the matrix and its inverse respectively. The following
definition for the norm of the matrix is used :

IIAIl = m..x L IAill·
f j_ t

The authors feel that the condition number of the matrix should be monitored for all
algorithms as it reflects the sensitivity of the output data to small errors or changes in the
input data, as shown in Vable (19&7, 1990). The four parameters R I-R4 defined by
equations were computed and arc reported for each problem for reasons discussed in
Section 7.

8.1. Example I
The dimensionless displacement solution for a clamped circular plate under a uniform

transverse load is given in Timoshenko and Woinowsky-Krieger (1959):

(42)

where the non-dimensionalizing parameters L = radius of the plate and M0 = pL2. The
plate boundary was uniformly divided into 24 elements [M = 24 in eqn (IS)} for linear
Lagrange approximation. Each of the elements was subdivided into four straight line
[N," = 4 in eqn (IS)} segments. Boundary conditions were satisfied every 15". Thus the total
number of unknowns was 48. For the Hermite cubic approximation the boundary conditions
were collocated at the same points. The boundary was made up of 12 elements (M = 12)
with eight subdivisions. In other words the length of the cubic element was formed by
combining two linear elements.

The area integral was evaluated using a single element [N = I in eqo (29»), as the
transverse load is constant over the entire plate. The same nodes and elements as used for
the line integrals were then used for evaluating the area integral.

Analytical values were compared with the computed values for the dimensionless
displacement lV, moment /Yr.. and shear force <2.•. No appreciable difference was found
between the linear and the cubic approximations and hence only results from the cubic
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Table 2. Percentage errors in example I

Boundary condition Boundary condition Boundary condition
type I type 2 type 3

Coordinates
(} ... M, Q, ... iiI, Q, ... til, Q,

0.00 0 0.06 0.03 2.2-t 112 211 0.02
0.50 0 0.08 0.09 0.00 2.99 3.07 0.00 374 0.02 0.00
0.90 0 0.29 0.02 0.01 1l.75 1.06 0.01 0.03 0.01
0.95 0 0.47 0.01 O.O-t 22.84 0.8-t O.O-t 0.01 0.03
0.99 0 0.9-t 0.39 0.55 2200 0.3-t 0.55 0.02 0.41
1.00 0 0.72 1.00 0.00 1.00 0.00 0.75
1.00 15 0.65 1.00 0.10 1.00 0.00 0.75
1.00 30 0.45 1.01 0.42 1.00 0.01 0.75
1.00 45 0.03 0.99 1.06 1.00 0.03 0.75

R, -3.1-t -312 -2.31
R, -1.57 -157 -2.39

approximation are reported in Table 2. The same type of boundary condition was specified
at all points.

The results of Table 2 show good correlations with analytical results for moments and
shear forces. Good correlations are also obtained for displacements when type I boundary
conditions arc imposed. Type 2 and .3 boundary conditions. however. show large errors for
the displacements. The asterisk in Table 2 implies error in excess of 10.000%. The reason
for these large errors is the presence of rigid body modes in the solution. II' displacement is
not specified at any point. such as in type 3 boundary conditions. then the body is free to
translate. Similarly. if slope is not specified at any point. such as in type 2 and 3 boundary
conditions. then the plate is free to rotate in the rigid body sense. From the computed
results. if the rigid body mode is calculated (the nUlllcrically computed boundary values for
displacement and slope were not zero) and accounted ror. thcn the error was of the order
or the type I boundary condition. Clearly this is an unacceptable procedure for practical
problems. Work is in progress to determine and eliminate the rigid body mode. as was
described for elastostatie problems in Vable (1987. 1990). It is worth noting that R I and
R4 are not zero for any type of boundary condition. R1 and R 1 are nearly zero and arc not
reported. It is certain that the non-zero values of R I and R 4 contribute towards the error.
but to what degree is not clear at this stage. In Table 3 the condition numbers for the two
approximations for dil1crent boundary conditions arc reported. For all boundary conditions
the cubic approximation shows an order of magnitude higher condition numbers. These
higher condition numbers imply a greater sensitivity to small changes or errors in the input
data for the cubic approximation. The reason linear and cubic approximations yield the
same percentage error was found in the behavior of the unknown. The first derivatives
along the boundary for fictitious shear force and moment were found to be zero for this
problem. In other words the fictitious shear force and moment were constant along the
boundary for this problem. Thus the cubic approximation did not improve the approxi
mation of the unknown as one had hoped.

8.2. Example 2
The dimensionless displacement solution for a simply supported square plate under a

uniform transverse load is given in Timoshenko and Woinowsky-Krieger (1959):

Table 3. Comparison of matrix condition numbers in example I

Linear
Cubic

Boundary condition
type I
(x 10')

8.6
2320

Boundary condition
type 2
(x 10')

12.0
2270

Boundary condition
type 3
(x 10 ' )

0.46
72.4
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-x:;

W = L Am cosh (m, 1ti) +Bm(m1tj) sinh (m1t.v) +Cmsin (m1t(x-0.5» (43)
m - 1.3.5

Bm = 2/ (1t
5
m

5
cosh ~1t)

Cm = 4/1t 5m5

where the non-dimensionalizing parameter L = the side of the square and M o = pL 2. The
origin of the coordinate system is at the center of the plate. The boundary data 0, ifn and
Vcan be easily generated by repeated differentiation of eqn (43). M;j and 0; can be found
similarly. A computer program was written in which the series was truncated at m = 91.
Boundary data were generated to simulate various boundary conditions. At each point on
the boundary the same kind of boundary condition was specified for types I and 2. The
type 3 boundary condition was not specified at all points because it would have resulted in
a rigid body mode, as in example I. Type 3 was specified on j = 0.5 and on the remaining
three sides the type 2 boundary condition was specified. It should be emphasized that at
each corner either the displacement or the corner force [eqn (8») should be enforced.
However. this was not done in the solution process for a variety of reasons. The chief reason
being that the variety of tricks suggested in the literature for modeling the corners have
either not proved satisfactory or have limited application.

The problems were solved using linear Lagrange and cubic Hermite approximations.
The mesh discretization was the same except that the length of a cubic element was
constructed by wmbining two linear clements. The total number of unknowns for both
:tpproximations was 96. The bound:try element solution was compared with the series
solution and the percentage difference is reported in Table 4 for the linear approximation
and Table 5 for the cubie approximation. Results arc reported along the diagonal and
x = O.

The cubil.: approximation yields bcttcr results for all types of boundary conditions. Its
results arc an order of magnitude bctter than the linear approximation when type 3 boundary
conditions are imposed on the edge j = 0.5. For both approximations the results deteriorate
as one approaches the corner. However, the accuracy of the linear approximation deterio
rates more rapidly than for the cubic approximation. Near the corner .i = j = 0.49, both
approximates yield nonsensical results. It should be noted, however, that all three quantities
(Ii', M. and 0.. )approach zero near the corner. Thus small differences result in very large
percentage errors. As one moves from the center towards the edge along x=0, the error
increases as expected. It should be noted once more that IV and M" tend to zero near

Table 4. Percentage errors in example 2 for linear Lagrange approximation

Boundary condition
Boundary condition Boundary condition type 3 on y =0.5.

type I type 2 type 2 elsewhere
Coordinates

.\" y l\' M, Q, w, M. Q. w M. Q•

0.00 0.00 0.14 0.06 0.51 0.36 9.47 6.67
0.20 0.20 0.16 0.07 0.26 0.33 0.01 1.09 8.62 4.11 30.9
0.40 0.40 1.48 2.46 109.0 6.46 76.3 192 23.1 185 9.13
0.45 0.45 1.04 60.5 1715 34.1 504 885 107 1160 180
0.00 0.20 0.16 0.18 0.30 0.41 0.07 0.20 6.26 0.60 8.4
0.00 0.40 0.13 0.38 1.11 0.51 0.93 1.59 4.81 3.17 0.44
0.00 0.45 0.10 0.25 2.19 0.63 1.39 5.03 4.28 3.28 4.06
0.00 0.49 0.22 30.9 3.82 1.20 18.4 11.4 1.62 18.2 10.7

R, -0.97 -0.94 -0.92
R. -0.19 -0.18 -0.17



360 M. VAHLE and Y. ZHA:'IG

Table 5. Percentage errors in e.~ample 2 for cubic Hermite approximation

Boundary condition
Boundary condition Boundary condition type 3 on y = 0.5.

type I type 2 type 2 elsewhere
Coordinates

x y ... AI, Q. '" AI, Q, '" J/, Q.

0.00 0.00 0.01 0.01 O.lot 0.10 0.64 0.39
0.20 0.20 0.01 O.O! O.W 0.16 O.lot 0.00 1.06 0.85 OA6
OAO OAO 0.!2 0.33 2.80 0.44 2.07 0.ot5 3.10 483 5.97
OA5 0.45 OAO 4.80 otH 0.9! !5.ot 22.2 2.58 18.6 ot30
0.00 0.20 0.01 O.O! O.()4 O.lot 0.10 0.08 0.69 0.55 001
0.00 OAO 0.01 0.08 060 016 022 0.21 0.82 1.19 0.89
0.00 OA5 0.06 0.39 1.56 0.16 025 O.lot 0.89 lA3 1.95
0.00 0.49 0.49 11.7 H5 0.13 0.26 0.17 0.14 8.54 7.52

R, -1.1 -1.1 -1.1
R, -0.23 -0.23 -0.23

Table 6. CompOirison of matrix condition numbers in example 2

Approximation

Linear
Cubic

Boundary cllndition
type I

( x 10')

25
24

Boundary condition
type 2

( x 10')

n
479

BoundOiry condition
type 3 on y = 0.5,
type 2 elsewhcre

( x 10')

8320
8570

the edge, but in spite of this the results at ,i; = 0.49 are not unreasonable for the cubic
approximation.

Table 6 shows the matrix condition numbers for the linear and cubic approximations.
Once more the cubic approximation results in a higher condition number for all types of
boundary condition. However, the dillcrences are not as dramatic as in example I.

9. CONCLUSIONS

The definition of the four functions in eqns (12) -( 14) simplifies the description of the
fundamental solution. It also reveals the structure of the fundamental solution that can be
exploited for the analytical evaluation of line and area integrals. For stresses and shear
forces to remain bounded the fictitious shear force and fictitious bending moment must be
continuous. The first derivative of the fictitious moment must also be continuous. When
the continuity conditions are met then the accuracy of the computed solution is better. as
demonstrated by example 2. The matrix condition number, however, becomes worse when
Hermite approximations are used to meet the continuity requirements, making the solution
more sensitive to changes and error in the input data. This higher condition number is
most likely because two c'OlIocation points are put in each element for the cubic Hermite
approximation as opposed to a single collocation point for the linear Lagrange approxi
mation. When the fictitious shear force and fictitious bending moment distributions do not
satisfy the conditions given in egn (40), then in addition to a rigid body mode, errors in
moments are also possible. Work is in progress to improve the matrix conditioning and
determine and account for the rigid body mode.
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